miércoles, 21 de octubre de 2009

Ejemplos y Tarea

Un avión que vuela a 2000 m de altura con una velocidad de 800 km/h suelta una bomba cuando se encuentra a 5000 m del objetivo. Determinar:

a) ¿A qué distancia del objetivo cae la bomba?.

b) ¿Cuánto tarda la bomba en llegar al suelo?.

c) ¿Dónde esta el avión al explotar la bomba?.

Se recuerda que en tiro parabólico y tiro oblicuo el movimiento en el eje "x" es rectilíneo uniforme, mientras en el eje "y" es uniformemente variado (asociar con tiro vertical y caída libre).

Donde no se indica se emplea g = 10 m/s ².

Datos:

vx = 800 km/h = 222,22 m/s

v0y = 0 m/s

h = 2000 m

d = 5000 m

Ecuaciones:

(1) v fy = v0y + g.t

(2) h = v0y.t + g.t ²/2

(3) vx = Δx/Δt

El gráfico es:












a) Primero calculamos el tiempo que demora en caer, de la ecuación (2):

h = g.t ²/2
t = √2.h/g


t = 20 s

Luego con la ecuación (3) obtenemos el punto de impacto:

vx = x/t
x = vx.t
x = (222,22 m/s).(20 s)
x = 444,44 m

Por lo tanto el proyectil cae a:

d = 5000 m - 444,44 m
d = 555,55 m

b) Es el tiempo hallado anteriormente:

t = 20 s

c) Sobre la bomba, ambos mantienen la misma velocidad en el eje "x".


Ejemplo 2: Calcular la distancia, la altura y el tiempo de caída de un tiro parabólico que lleva una velocidad de 30m/s y forma una ángulo de 60° con la horizontal.

Primero calculamos la distancia recorrida.

d= v12sen2a / g = (30m/s)2 sen 2(60°) / 9.8 m/s2 = 158.99 m

Ahora la altura alcanzada.

h= v21sen2a / 2g= (30 m/s)2 sen2 (60°) / 2(9.8 m/s2) = 36.29 m

Por último el tiempo realizado.

t= v1 sen a / g= 30 m/s (sen 60°) / 9.8 m/s2 = 2.85 s


Tarea:

Resolver los siguientes problemas:

Problema n° 1) Se lanza un proyectil con una velocidad inicial de 200 m/s y una inclinación, sobre la horizontal, de 30°. Suponiendo despreciable la pérdida de velocidad con el aire, calcular:

a) ¿Cuál es la altura máxima que alcanza la bala?.

b) ¿A qué distancia del lanzamiento alcanza la altura máxima?.

c) ¿A qué distancia del lanzamiento cae el proyectil?.

Respuesta: a) 39,36 m

b) 1732,05 m

c) 3464,1 m

Problema n° 2) Se dispone de un cañón que forma un ángulo de 60° con la horizontal. El objetivo se encuentra en lo alto de una torre de 26 m de altura y a 200 m del cañón. Determinar:

a) ¿Con qué velocidad debe salir el proyectil?.

b) Con la misma velocidad inicial ¿desde que otra posición se podría haber disparado?.

Respuesta: a) 49,46 m/s

b) 17 m

Problema n° 3) Un chico patea una pelota contra un arco con una velocidad inicial de 13 m/s y con un ángulo de 45° respecto del campo, el arco se encuentra a 13 m. Determinar:

a) ¿Qué tiempo transcurre desde que patea hasta que la pelota llega al arco?.

b) ¿Convierte el gol?, ¿por qué?.

c) ¿A qué distancia del arco picaría por primera vez?.

Respuesta: a) 1,41 s

b) No

c) 17,18 m

Problema n° 4) Sobre un plano inclinado que tiene un ángulo α = 30°, se dispara un proyectil con una velocidad inicial de 50 m/s y formando un ángulo β = 60° con la horizontal. Calcular en que punto del plano inclinado pegará.

Respuesta: 165,99 m

Problema n° 5) Un cañón que forma un ángulo de 45° con la horizontal, lanza un proyectil a 20 m/s, a 20 m de este se encuentra un muro de 21 m de altura. Determinar:

a) ¿A qué altura del muro hace impacto el proyectil?.

b) ¿Qué altura máxima logrará el proyectil?.

c) ¿Qué alcance tendrá?.

d) ¿Cuánto tiempo transcurrirá entre el disparo y el impacto en el muro?.

Respuesta: a) 9,75 m

b) 10,2 m

c) 40,82 m

d) 1,41 s

Problema n° 6) Un mortero dispara sus proyectiles con una velocidad inicial de 800 km/h, ¿qué inclinación debe tener el mortero para que alcance un objetivo ubicado a 4000 m de este?.

Respuesta: 26° 16´ 16"

Responder el siguiente cuestionario:

Pregunta n° 1) En el tiro parabólico ¿qué tipo de movimiento se manifiesta en el eje "x"?.

Pregunta n° 2) En el tiro parabólico ¿qué tipo de movimiento se manifiesta en el eje "y"?.

Pregunta n° 3) ¿En qué posición es nula la velocidad en el eje "y"?.


No hay comentarios:

Publicar un comentario